
Speaker-Invariant Adversarial Domain Adaptation
for Emotion Recognition

Yufeng Yin
University of Southern California
Institute for Creative Technologies

Los Angeles, CA, USA
yin@ict.usc.edu

Baiyu Huang
University of Southern California
Institute for Creative Technologies

Los Angeles, CA, USA
baiyu@ict.usc.edu

Yizhen Wu
University of Southern California
Institute for Creative Technologies

Los Angeles, CA, USA
ywu@ict.usc.edu

Mohammad Soleymani
University of Southern California
Institute for Creative Technologies

Los Angeles, CA, USA
soleymani@ict.usc.edu

ABSTRACT
Automatic emotion recognition methods are sensitive to the varia-
tions across different datasets and their performance drops when
evaluated across corpora. We can apply domain adaptation tech-
niques e.g., Domain-Adversarial Neural Network (DANN) to miti-
gate this problem. Though the DANN can detect and remove the
bias between corpora, the bias between speakers still remains which
results in reduced performance. In this paper, we propose Speaker-
Invariant Domain-Adversarial Neural Network (SIDANN) to reduce
both the domain bias and the speaker bias. Specifically, based on
the DANN, we add a speaker discriminator to unlearn information
representing speakers’ individual characteristics with a gradient re-
versal layer (GRL). Our experiments with multimodal data (speech,
vision, and text) and the cross-domain evaluation indicate that the
proposed SIDANN outperforms (+5.6% and +2.8% on average for
detecting arousal and valence) the DANN model, suggesting that
the SIDANN has a better domain adaptation ability than the DANN.
Besides, the modality contribution analysis shows that the acoustic
features are the most informative for arousal detection while the
lexical features perform the best for valence detection.
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1 INTRODUCTION
Emotions play a significant role not only in human creativity and in-
telligence but also in rational human thinking and decision-making.
To enable natural and intelligent interaction with humans, comput-
ers need the ability to recognize and express emotions [24]. Over
the past few years, deep learning approaches have shown promising
performance for emotion recognition [34, 37, 42]. However, con-
structing a large-scale emotion benchmark is both time-consuming
and expensive. As a result, it is unrealistic to construct a large fully-
annotated database every time we perform an emotion recognition
task on a new domain. Deep domain adaptation has emerged as
a new learning technique to address the lack of massive amounts
of labeled data [41]. Using the publicly available fully-annotated
audiovisual emotion databases (e.g., MSP-Improv [3], IEMOCAP
[2]), we can apply deep domain adaptation techniques e.g., DANN
[9] to recognize the emotions on an unlabeled dataset.

In the adversarial-based domain adaptation e.g., DANN [9], a
domain discriminator is trained to classify whether a data point is
drawn from the source or target domain. It is used to encourage the
domain confusion through an adversarial objective to minimize the
distance between the source and target domains [41]. The Domain-
Adversarial Neural Network (DANN) [9] is trained to minimize the
classification loss (for source samples) while maximizing domain
confusion loss via the use of the GRL.

The DANNmodel succeeds in reducing the domain bias between
the source and the target domains, but it fails to address the bias
between the speakers. There are multiple speakers in the MSP-
Improv and the IEMOCAP databases, eachwith their own individual
appearance and voice characteristics. Though the DANN model
can detect and remove the bias between domains, the bias between
speakers still remains which results in reduced performance.

To address this problem, we propose Speaker-Invariant Domain-
Adversarial Neural Network (SIDANN). Figure 1 shows the network
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Figure 1: The network architecture for the cross-domain emotion recognition models. The inputs from different modalities
are passed through themodels, in this case,MFB/VGGish for speech, ResNet for vision, BERT for language. The baselinemodel
only has the encoder and emotion classifier. The DANN model has the encoder, emotion classifier, and domain discriminator.
The SIDANN has all the four parts (encoder, emotion classifier, domain discriminator, and speaker discriminator).

architectures for the cross-domain emotion recognition models.
Specifically, based on the DANN model, we add a speaker discrimi-
nator to detect the speaker’s identity.We add a GRL at the beginning
of the discriminator so that the encoder can unlearn the speaker-
specific information.

To confirm the effectiveness of our proposed model, we conduct
the within-domain and cross-domain experiments with multimodal
data (speech, vision, and text). We evaluate our method on two
publicly available fully-annotated audiovisual emotion databases
(MSP-Improv [3] and IEMOCAP [2]). Specifically, the MSP-Improv
and IEMOCAP database have 8,348 and 10,039 utterances respec-
tively produced by 22 speakers in total, each labeled with both
arousal and valence values.

We extract two kinds of acoustic features: 1) the Mel Filter Bank
(MFB) acoustic features. 2) the VGGish [10, 15] acoustic represen-
tations. We obtain the visual features from the penultimate layer
of the ResNet-152 [14] and we use the pre-trained BERT [7] to
transform the text from each utterance into a vector.

For the within-domain experiments, we train and test the base-
line model with five-fold speaker-independent cross-validation. For
the cross-domain experiments, we first train the baseline with the
labeled source data and then train the domain adaptation mod-
els (DANN [9], and SIDANN) by fine-tuning the baseline with
the labeled source data and unlabeled target data. We then test
all three models on the whole target domain. The results of the
within-domain experiments show that themultimodel with theMFB
acoustic and the BERT lexical features has the best performance
for arousal detection. Meanwhile, the multimodel with the MFB
acoustic, the ResNet visual, and the BERT lexical features achieve
the best performance for valence detection. For the cross-domain
experiments, our results indicate that the proposed SIDANN model
outperforms (+5.6% and +2.8% on average for detecting arousal and
valence) the DANN model, confirming that the SIDANN has better
domain adaptation ability than the DANN.

The major contributions of this work are as follows: (1) We
study the unsupervised domain adaptation problem on emotion
recognition with multimodal data including speech, vision, and
language. We conduct detailed experiments to explore the domain
adaptation performance of different modalities and their combina-
tions. (2) We study the problem of how to reduce both the domain
bias and speaker bias. Based on the DANN model, we propose
Speaker-Invariant Domain-Adversarial Neural Network to sepa-
rate the speaker bias from the domain bias. Specifically, we add a
speaker discriminator to detect the speaker’s identity. There is a
GRL at the beginning of the discriminator so that the encoder can
unlearn the speaker-specific information. The experimental results
confirm that the SIDANN has a better domain adaptation ability
than the DANN.

2 RELATEDWORK
In this section, we introduce the background and the previous work
of domain adaptation. Additionally, we show some research work
applying domain adaptation techniques in emotion recognition.

2.1 Domain Adaptation
Supervised deep learning methods suffer from performance loss
on unseen data due to the covariate shift. Domain adaptation tech-
niques are proposed to reduce discrepancies between different do-
mains. Unsupervised Domain Adaptation (UDA) can be used to
train a model with labeled data from the source domain (training
dataset) and unlabeled data from the target domain (unseen dataset).
The goal is to learn a representation that is both discriminative for
the main learning task (e.g., emotion recognition) on the source
domain and insensitive to the covariate shift between the domains.

Wang et al. [41] defines this kind of problem as the homo-
geneous domain adaptation and divides the homogeneous do-
main adaptation into three categories: discrepancy-based approach,
adversarial-based approach, and reconstruction-based approach.
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The discrepancy-based approach aims to diminish the shift be-
tween the two domains by fine-tuning the deep network model
[41]. Tzeng et al. [36] proposes a new CNN architecture with an
adaptation layer and an additional domain confusion loss, to learn
a representation that is both semantically meaningful and domain
invariant. Long et al. [20] proposes a Deep Adaptation Networks
(DAN) architecture, which generalizes deep CNNs to the domain
adaptation scenario. In this architecture, hidden representations of
all task-specific layers are embedded in a reproducing kernel Hilbert
space where the mean embeddings of different domain distribu-
tions can be explicitly matched. Rozantsev et al. [29] introduces a
two-stream architecture, where one operates in the source domain
and the other in the target domain. The weights in corresponding
layers are related but not shared. Saito et al. [30] introduces a new
approach that attempts to align distributions of source and target
by utilizing the task-specific decision boundaries.

Regarding to the adversarial-based approach, a domain discrimi-
nator that classifies whether a data point is drawn from the source
or target domain. It is used to encourage the domain confusion
through an adversarial objective to minimize the distance between
the source and target domains [41]. The Domain-Adversarial Neural
Network (DANN) [9] integrates a gradient reversal layer (GRL) into
the standard architecture to ensure that the feature distributions
over the two domains are made similar. In contrast to the DANN, the
Adversarial Discriminative Domain Adaptation (ADDA) [35] model
considers the independent source and target mappings by untying
the weights, and the parameters of the target model are initialized
by the pre-trained source one. The Wasserstein Distance Guided
Representation Learning (WDGRL) [32] uses a domain critic to min-
imize the Wasserstein Distance (with Gradient Penalty) between
domains. The Multi-Adversarial Domain Adaptation (MADA) [23]
captures multimode structures to enable fine-grained alignment of
different data distributions based on multiple domain discrimina-
tors. The Selective Adversarial Network (SAN) [4] addresses partial
transfer learning from big domains to small domains where the
target label space is a subspace of the source label space.

The third category is the reconstruction-based approach which
assumes that the data reconstruction of the source or target samples
can help improve the performance of domain adaptation [41]. Bous-
malis et al. [1] decouples domain adaptation from a specific task
and trains a model that changes images from the source domain
to appear as they were from the target domain while maintaining
their original content. Hoffman et al. [16] proposes a novel discrim-
inatively trained Cycle-Consistent Adversarial Domain Adaptation
(CyCADA) model. The model adapts representations at both pixel-
and feature-level and enforces cycle-consistency while leveraging
a task loss, and does not require aligned pairs.

2.2 Domain Adaptation for Emotion
Recognition

Because of the multi-faceted information included in the speech sig-
nal [8], domain adaptation has been widely applied to speech-based
emotion recognition. Li et al. [19] proposes a machine learning
framework to obtain speech emotion representations by limiting
the effect of speaker variability in the speech signals. Gideon et al.

[11] investigates how knowledge can be transferred between three
paralinguistic tasks: speaker, emotion, and gender recognition.

Emotions result in behavioral changes including facial expres-
sions [8]. A variety of domain adaptation techniques have been
explored for vision-based emotion recognition. Zhao et al. [44] de-
velops a novel adversarial model for emotion distribution learning,
termed EmotionGAN, which optimizes the Generative Adversarial
Network (GAN) loss, semantic consistency loss, and regression loss.
The EmotionGANmodel can adapt source domain images such that
they appear as if they were drawn from the target domain while
preserving the annotation information.

For cross-domain sentiment analysis, Glorot et al. [12] studies
the problem of domain adaptation for sentiment classifiers. They
demonstrated that a deep learning system based on Stacked De-
noising Auto-Encoders with sparse rectifier units can perform an
unsupervised feature extraction which is highly beneficial for the
domain adaptation of sentiment classifiers.

Moreover, these modalities are often combined for multimodal
learning. For example, Jaiswal et al. [17] studies how stress alters
acoustic and lexical emotional detection. They use the GRL to decor-
relate stress modulations from emotion representations. Zhao et al.
[43] uses an adversarial training procedure to investigate how emo-
tion knowledge of Western European cultures can be transferred to
Chinese culture with all the three modalities (speech, vision, and
language).

3 PROBLEM FORMULATION
Given a set of utterances 𝑆 , for each utterance x𝑖 ∈ 𝑆 , x𝑖 = {x𝑎𝑖 , x

𝑣
𝑖
, x𝑙

𝑖
},

where x𝑎
𝑖
, x𝑣

𝑖
, and x𝑙

𝑖
represent the acoustic, visual, and lexical fea-

tures respectively.
Problem. Emotion Recognition. Given an utterance set 𝑆 , we

aim to detect the arousal and the valence values 𝑎𝑖 , 𝑣𝑖 for each
utterance x𝑖 ∈ 𝑆 using function 𝑓𝑎 (.) and 𝑓𝑣 (.):

𝑎𝑖 = 𝑓𝑎 (x𝑖 ) (1)
𝑣𝑖 = 𝑓𝑣 (x𝑖 ) (2)

4 DATASETS AND FEATURES
In this section, we introduce in detail the datasets we use to evaluate
the methods.

4.1 Datasets
Two public datasets are used to study the UDA problem for emotion
recognition: (1) MSP-Improv dataset [3]; and (2) Interactive Emo-
tional Dyadic Motion Capture (IEMOCAP) database [2]. Both are
audiovisual databases and have the arousal and the valence labels.
Videos from both the databases are shot in a laboratory thus they
have similar environments.

MSP-Improv. The MSP-Improv database is an acted audiovisual
emotional database that explores emotional behaviors during acted
and improvised dyadic interaction. Overall, the corpus consists of
8,438 turns (over 9 hours) of emotional sentences and 12 speakers
(6 males and 6 females).

IEMOCAP. The IEMOCAP database is an acted, multimodal,
and multispeaker database. It contains approximately 12 hours of
audiovisual data, including video, speech, motion capture of face,
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(a) A screenshot from MSP-Improv. (b) A screenshot from IEMOCAP.

Figure 2: Screenshots from MSP-Improv and IEMOCAP.

text transcriptions. Overall, the dataset has 10,039 utterances and
10 speakers (5 males and 5 females).

Screenshots from the two databases are shown in Figure 2a and
Figure 2b. Videos are recorded from different angles and the video
resolutions are also different.

4.2 Labels
Each utterance in MSP-Improv and IEMOCAP has labels for both
arousal and valence on a five-point Likert scale. According to the
label processing method mentioned in [17], we bin the labels into
one of the three classes, defined as, {"low":[1, 2.75], "mid":(2.75, 3.25],
"high":(3.25, 5]}.

The overall distribution for arousal is: {"low": 45.69%, "mid":
20.72%, "high": 33.59%} and for valence is: {"low": 25.49%, "mid":
23.14%, "high": 51.37%}. Therefore, the label distributions are im-
balanced. Moreover, label distributions vary between datasets (see
Figure 3).

4.3 Features
Behavior from three modalities is analyzed. Speakers’ spoken con-
tent is manually transcribed in the IEMOCAP and automatically
recognized in the MSP-Improv. Videos are used to track facial ex-
pressions and speech prosody is analyzed from audio.

4.3.1 Speech. The Mel Filter Bank (MFB) consists of overlapping
triangular filters with the cutoff frequencies determined by the
center frequencies of the two adjacent filters [5]. The MFB acoustic
features have shown great domain transferability in previous work
of emotion recognition [17]. We use the same extraction method
as [17]. Specifically, we extract the 40-dimensional MFB features
using a 25-millisecond Hamming window with a step-size of 10-
milliseconds. As a result, we have a𝑇 ×40 vector for each utterance,
where 𝑇 represents the number of time steps.

Deep neural networks trained on large quantities of data are
able to learn powerful representations [7, 10, 14, 15]. Therefore,
we also utilize the VGGish [10, 15] to extract a deep generalized
acoustic representation for different domains. VGGish is a deep
convolutional neural network trained on audio spectrograms ex-
tracted from a large database of videos to recognize an ontology of
632 audio events, for example, vehicle noise, music genre, human
locomotion [10, 15]. According to the acoustic feature extraction
method mentioned in [33], we use the 128-dimensional embedding
that can be generated by the VGGish after dimensionality reduction
with Principal Component Analysis (PCA). We use the hop size of
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(a) Distributions of arousal values.
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(b) Distributions of valence values.

Figure 3: Label distributions for different domains.

33ms, which means a 128-dimensional vector is extracted for every
33ms of the audio signals. As a result, we have a 𝑇 × 128 vector for
each utterance, where 𝑇 represents the number of time steps.

4.3.2 Vision. We first sample the videos at a 30 fps rate and crop
the speaker’s face for each frame with OpenCV 1. To extract a gen-
eralized visual representation for different domains, we extract the
activations from the penultimate layer of ResNet-152 [14] trained
on the ImageNet [6]. We feed the network with cropped faces from
each frame. As a result, we have a𝑇 ×2048matrix for each utterance,
where 𝑇 denotes the number of frames.

4.3.3 Language. To represent the spoken words, we use the pre-
trained BERT [7] for mapping the spoken utterances to a represen-
tation. Bidirectional Encoder Representations from Transformers
(BERT) [7] is a method for learning a language model that can be
trained on a large amount of data in an unsupervised manner. This
pre-trained model is very effective in representing a sequence of
terms as a fixed-length representation (vector). BERT representa-
tion achieves state-of-the-art results in multiple natural language
understanding tasks [33]. In this paper, we use pre-trained BERT to
transform the text for each utterance into a 768-dimensional vector.
IEMOCAP includes manual transcriptions that we use for language
analysis. We transcribe MSP-Improv using Google Cloud enhanced
Automatic Speech Recognition (ASR) 2 to generate the text data.
We discard 271 out of 8,438 utterances for which ASR fails to detect
any speech. As a result, we use 8,167 utterances in total for the
MSP-Improv database.

Finally, we z-normalize all the features from three modalities
(acoustic, visual, and lexical) for each speaker, by subtracting their
mean value and dividing them by their standard deviation.

5 METHODOLOGY
In this section, we introduce the notations and show the network
architectures and the detailed training strategies for both the base-
line and UDA models. Their network architectures are shown in
Figure 1. Also, the pseudo-code for training the SIDANN model for
one epoch is shown in the Algorithm 1.

1https://opencv.org/
2https://cloud.google.com/speech-to-text/docs/enhanced-models
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5.1 Notations
Let the source dataset be𝐷𝑠 = {(x1, 𝑒1, 𝑠1, 𝑑1), ..., (x𝑀 , 𝑒𝑀 , 𝑠𝑀 , 𝑑𝑀 )}
and the target dataset be𝐷𝑡 = {(x𝑀+1, 𝑠𝑀+1, 𝑑𝑀+1), ..., (x𝑁 , 𝑠𝑁 , 𝑑𝑁 )}
(𝑁 > 𝑀 > 0).

𝑀 and 𝑁 − 𝑀 are the numbers of the source and target utter-
ances respectively. x𝑖 = {x𝑎𝑖 , x

𝑣
𝑖
, x𝑙

𝑖
} is the extracted feature. 𝑒𝑖 is

the emotion label (arousal or valence value). We do not have the
emotion labels for the target dataset. 𝑠𝑖 denotes the speaker identity.
𝑑𝑖 is the domain label, where 𝑑𝑖 = 0 means 𝑥𝑖 belongs to the source
domain and 𝑑𝑖 = 1means it belongs to the target domain. Therefore,
𝑑𝑖 = 0, for 𝑖 = 1, 2, ..., 𝑀 and 𝑑𝑖 = 1, for 𝑖 = 𝑀 + 1, 𝑀 + 2, ..., 𝑁 .

5.2 Baseline Model
We use the multimodal approach mentioned in [17]. It is worth
noting that Jaiswal et al. [17] only utilizes the acoustic and lexical
features to recognize emotions. Also, the lexical features they ex-
tracted are sequential but ours are not. Therefore, for the visual
part, we use the same architecture as the acoustic one and for the
lexical part, we simply use a linear layer as encoder.

The network architecture is shown in Figure 1. The baseline
model only has two parts: encoder and emotion classifier. We as-
sume each part as a mapping. The encoder 𝐺𝑒 outputs a fixed-size
representation f given x (acoustic, visual, and lexical features). The
emotion classifier 𝐺𝑐 maps f to a probability distribution e over
the emotion label space of three classes (low or mid or high). We
denote the vector of parameters from all layers in the encoder and
the emotion classifier as 𝜃𝑒 and 𝜃𝑐 . As a result, we have:

f = 𝐺𝑒 (x;𝜃𝑒 ) (3)
e = 𝐺𝑐 (f ;𝜃𝑐 ) (4)

The unimodal baseline only takes a single stream (acoustic or
visual or lexical) input while the bimodal baseline takes a two-
stream input and the trimodal baseline takes a three-steam input
(acoustic, visual, and lexical).

The goal of the model is to minimize the cross-entropy loss
which is defined as follows:

𝐿𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝐿𝑒𝑚𝑜𝑡𝑖𝑜𝑛 =
∑

(x𝑖 ,𝑒𝑖 ) ∈𝐷𝑠

𝐿𝑒 (𝐺𝑐 (f𝑖 ;𝜃𝑐 ), 𝑒𝑖 )

=
∑

(x𝑖 ,𝑒𝑖 ) ∈𝐷𝑠

𝐿𝑒 (𝐺𝑐 (𝐺𝑒 (x𝑖 ;𝜃𝑒 );𝜃𝑐 ), 𝑒𝑖 ) (5)

Where 𝐿𝑒 is the cross-entropy loss.

5.3 Domain-Adversarial Neural Network
The Domain-Adversarial Neural Network (DANN) [9] minimizes
the classification loss (for source samples) while maximizing do-
main confusion loss. The DANN integrates a gradient reversal layer
(GRL) into the standard architecture to ensure that the feature
distributions over the two domains are similar.

Based on the baseline architecture, we add a domain discrimi-
nator to discriminate whether the output of the encoder is from
the source or the target domain. Specifically, there is a gradient
reversal layer (GRL) at the beginning of the domain discriminator.

The DANN has three parts: encoder, emotion classifier, and do-
main discriminator. The domain discriminator𝐺𝑑 maps f to a prob-
ability distribution d over the domain label space of two classes

Algorithm1 Train the SIDANN for one epoch. For Adam optimizer,
we use the default values of 𝛼 = 0.0001, 𝛽1 = 0.9, and 𝛽2 = 0.999.
The batch size𝑚 is 256.
Require: The batch size𝑚, Adam hyperparameters 𝛼, 𝛽1, 𝛽2.
Require: Parameters for encoder 𝜃𝑒 , emotion classifier 𝜃𝑐 , domain
discriminator 𝜃𝑑 , and speaker discriminator 𝜃𝑠 and their corre-
sponding mappings: 𝐺𝑐 , 𝐺𝑒 , 𝐺𝑑 , and 𝐺𝑠 .

Require: Weights for the domain loss 𝜆1 and the speaker loss 𝜆2.
𝑚′ ←𝑚/2
𝑛1 ← (Number of source samples)/𝑚′
𝑛2 ← (Number of target samples)/𝑚′
𝑛 ← min(𝑛1, 𝑛2)
for 𝑏𝑎𝑡𝑐ℎ = 1, ..., 𝑛 do
Sample {x𝑖 , 𝑒𝑖 , 𝑠𝑖 , 𝑑𝑖 }𝑚

′
𝑖=1 a half batch from source data

Sample {x𝑖 , 𝑠𝑖 , 𝑑𝑖 }𝑚𝑖=𝑚′+1 a half batch from target data
X𝑠 ← {x𝑖 }𝑚

′
𝑖=1

X← {x𝑖 }𝑚𝑖=1
f𝑠 ← 𝐺𝑒 (X𝑠 )
f ← 𝐺𝑒 (X)
𝐿𝑒 ← 𝐺𝑒 (f𝑠 )
𝐿𝑑 ← 𝐺𝑑 (f)
𝐿𝑠 ← 𝐺𝑠 (f)
𝑙𝑜𝑠𝑠𝐸 ← 1

𝑚′
∑𝑚′
𝑖=1 𝑒𝑖 × log(𝐿𝑒𝑖 )

𝑙𝑜𝑠𝑠𝐷 ← 1
𝑚

∑𝑚
𝑖=1 𝑑𝑖 × log(𝐿𝑑𝑖 )

𝑙𝑜𝑠𝑠𝑆 ← 1
𝑚

∑𝑚
𝑖=1 𝑠𝑖 × log(𝐿𝑠𝑖 )

𝜃𝑒 ← Adam(Δ𝜃𝑒 [𝑙𝑜𝑠𝑠𝐸 − 𝜆1𝑙𝑜𝑠𝑠𝐷 − 𝜆2𝑙𝑜𝑠𝑠𝑆 ], 𝜃𝑒 , 𝛼, 𝛽1, 𝛽2)
𝜃𝑐 ← Adam(Δ𝜃𝑐 [𝑙𝑜𝑠𝑠𝐸 ], 𝜃𝑐 , 𝛼, 𝛽1, 𝛽2)
𝜃𝑑 ← Adam(Δ𝜃𝑑 [𝑙𝑜𝑠𝑠𝐷 ], 𝜃𝑑 , 𝛼, 𝛽1, 𝛽2)
𝜃𝑠 ← Adam(Δ𝜃𝑠 [𝑙𝑜𝑠𝑠𝑆 ], 𝜃𝑠 , 𝛼, 𝛽1, 𝛽2)

end for

(source or target). We denote the vector of parameters from all
layers in the domain discriminator as 𝜃𝑑 . Therefore, we have:

d = 𝐺𝑑 (f ;𝜃𝑑 ) (6)

The objective function of the model has two parts: the task-
specific loss and domain loss. The task-specific loss is the same as
the baseline objective function which is shown in Equation 5. The
domain loss is defined as follow:

𝐿𝑑𝑜𝑚𝑎𝑖𝑛 =
∑

(x𝑖 ,𝑑𝑖 ) ∈𝐷𝑠∪𝐷𝑡

𝐿𝑑 (𝐺𝑑 (f𝑖 ;𝜃𝑑 ), 𝑑𝑖 )

=
∑

(x𝑖 ,𝑑𝑖 ) ∈𝐷𝑠∪𝐷𝑡

𝐿𝑑 (𝐺𝑑 (𝐺𝑒 (x𝑖 ;𝜃𝑒 );𝜃𝑑 ), 𝑑𝑖 ) (7)

Where 𝐿𝑑 is the cross-entropy loss.
The objective of the DANN is to maximize the performance of the

emotion classifier while minimizing the performance of the domain
discriminator. Overall, the goal of the DANN model is defined as
follows:

𝐿𝐷𝐴𝑁𝑁 = 𝐿𝑒𝑚𝑜𝑡𝑖𝑜𝑛 − 𝜆 ∗ 𝐿𝑑𝑜𝑚𝑎𝑖𝑛 (8)

Where 𝜆 is the hyper-parameter that controls the trade-off between
the two objectives that shape the features during learning [9].
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Table 1: Within-domain performance of the baseline model. A1, A2, V, and L represent VGGish acoustic, MFB acoustic, ResNet
visual, and BERT lexical features. M and I stand for MSP-Improv and IEMOCAP database. ACC and UAR stand for Accuracy
and Unweighted Average Recall. They are 0.33 when the detected labels are uniformly distributed.

(a) Results for detecting arousal.

ACC UAR
Modality M I M I Avg
A1 0.619 0.577 0.509 0.525 0.558
A2 0.672 0.593 0.492 0.602 0.590
V 0.568 0.474 0.415 0.492 0.487
L 0.513 0.510 0.409 0.473 0.476
A1+V 0.601 0.569 0.455 0.532 0.539
A2+V 0.646 0.556 0.503 0.489 0.549
A1+L 0.587 0.578 0.467 0.527 0.540
A2+L 0.684 0.587 0.587 0.550 0.602
V+L 0.547 0.505 0.428 0.466 0.487
A1+V+L 0.623 0.573 0.513 0.517 0.557
A2+V+L 0.644 0.570 0.500 0.530 0.561

(b) Results for detecting valence.

ACC UAR
Modality M I M I Avg
A1 0.428 0.466 0.417 0.431 0.436
A2 0.422 0.455 0.489 0.489 0.464
V 0.503 0.499 0.472 0.462 0.484
L 0.513 0.618 0.499 0.576 0.552
A1+V 0.503 0.518 0.493 0.462 0.494
A2+V 0.489 0.510 0.471 0.478 0.487
A1+L 0.538 0.611 0.515 0.571 0.559
A2+L 0.538 0.629 0.527 0.583 0.569
V+L 0.539 0.614 0.520 0.541 0.554
A1+V+L 0.554 0.643 0.534 0.555 0.572
A2+V+L 0.537 0.638 0.553 0.571 0.575

5.4 Speaker-Invariant Domain-Adversarial
Neural Network

Although theDANNmodel can remove the domain bias between the
source and the target domain, it ignores the bias between speakers.
There are 12 speakers in the MSP-Improv database and 10 in the
IEMOCAP database. These 22 speakers have individual styles for
expressing emotions. Therefore, during the DANN training, the
model mixes these two sources of bias together resulting in poor
performance.

To address this problem, we propose Speaker-Invariant Domain-
Adversarial Neural Network (SIDANN). Specifically, we add a speaker
discriminator to detect the speaker’s identity. Similar to the DANN
model, we add a GRL at the beginning of the discriminator so that
the encoder can unlearn the speaker-specific information. With
the speaker discriminator, the model can separate the speaker bias
from the domain bias.

Overall, the SIDANN has four parts: encoder, emotion classifier,
domain discriminator, and speaker discriminator. The speaker dis-
criminator𝐺𝑠 maps f to a probability distribution s over the speaker
label space of 22 classes. We denote the vector of parameters from
all layers in the speaker discriminator as 𝜃𝑠 . Therefore, we have:

s = 𝐺𝑠 (f ;𝜃𝑠 ) (9)

Besides the task-specific loss (Equation 5) and domain loss (Equa-
tion 7), the objective function of the SIDANN has the speaker loss,
which is defined as follows:

𝐿𝑠𝑝𝑒𝑎𝑘𝑒𝑟 =
∑

(x𝑖 ,𝑠𝑖 ) ∈𝐷𝑠∪𝐷𝑡

𝐿𝑠 (𝐺𝑠 (f𝑖 ;𝜃𝑠 ), 𝑠𝑖 )

=
∑

(x𝑖 ,𝑠𝑖 ) ∈𝐷𝑠∪𝐷𝑡

𝐿𝑠 (𝐺𝑠 (𝐺𝑒 (x𝑖 ;𝜃𝑒 );𝜃𝑠 ), 𝑠𝑖 ) (10)

Where 𝐿𝑠 is the cross-entropy loss.
The objective of the SIDANN is to maximize the performance

of the emotion classifier while minimizing the performance of the
domain discriminator and the speaker discriminator.

Integrating all the things (Equation 5, 7, and 10), the goal of the
DANN model is defined as follows:

𝐿𝑆𝐼𝐷𝐴𝑁𝑁 = 𝐿𝑒𝑚𝑜𝑡𝑖𝑜𝑛 − 𝜆1 ∗ 𝐿𝑑𝑜𝑚𝑎𝑖𝑛 − 𝜆2 ∗ 𝐿𝑠𝑝𝑒𝑎𝑘𝑒𝑟 (11)

Where 𝜆1 and 𝜆2 are the hyperparameters that control the trade-
off between the three objectives that shape the features during
learning.

The pseudo-code for training the SIDANN model for one epoch
is shown in the Algorithm 1.

6 EXPERIMENTS
In this section, we will describe the experimental design and the
training details. We will also report and discuss the experimental
results.

6.1 Experimental Design
6.1.1 Within-domain Evaluation. To evaluate the baseline model,
we train and test it with five-fold speaker-independent cross-validation.
Specifically, we evaluate the performance of the unimodal, bimodal,
and trimodal model.

6.1.2 Cross-domain Evaluation. We design to set one database as
the source domain and the other as the target domain. Thus, we
have two directions of domain adaptation (M→ I and I→M, where
M is MSP-Improv and I is IEMOCAP).

For the baseline model, we use 80% of the source data for train-
ing and 20% for validation where training and validation data are
speaker-independent. For the DANN and the SIDANN, we train
them by fine-tuning the baseline model with the labeled source
data and unlabeled target data. We then test all the three models
on the whole target domain.

6.2 Evaluation Metrics
We utilize Accuracy (ACC) and Unweighted Average Recall (UAR)
to evaluate the performance. Specifically, ACC and UAR are 0.33
when the detected labels are uniformly distributed.
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Table 2: Cross-domain performance of the unsupervised do-
main adaptation.

(a) Results for detecting arousal (Inputs are the MFB acoustic features and the
BERT lexical features).

ACC UAR
Model M→ I I→M M→ I I→M Avg
Baseline 0.241(.03) 0.291(.05) 0.186(.02) 0.245(.03) 0.241
DANN 0.321(.01) 0.266(.06) 0.271(.01) 0.279(.02) 0.309
SIDANN 0.392(.03) 0.390(.08) 0.371(.02) 0.308(.01) 0.365

(b) Results for detecting arousal (Inputs are the MFB acoustic features and the
ResNet visual features).

ACC UAR
Model M→ I I→M M→ I I→M Avg
Baseline 0.263(.02) 0.284(.06) 0.188(.01) 0.277(.03) 0.253
DANN 0.388(.03) 0.407(.09) 0.344(.02) 0.336(.03) 0.369
SIDANN 0.415(.01) 0.506(.07) 0.422(.03) 0.379(.03) 0.430

(c) Results for detecting valence (Inputs are the MFB acoustic features, the
ResNet visual features, and the BERT lexical features).

ACC UAR
Model M→ I I→M M→ I I→M Avg
Baseline 0.381(.02) 0.407(.01) 0.442(.02) 0.406(.01) 0.409
DANN 0.460(.02) 0.456(.02) 0.409(.01) 0.456(.03) 0.445
SIDANN 0.480(.01) 0.500(.03) 0.431(.02) 0.482(.03) 0.473

6.3 Training Details
For the baseline model, it is trained for a maximum of 50 epochs
and we stop the training if the validation loss does not improve
after five consecutive epochs. Given the imbalanced nature of our
data, we utilize an imbalanced dataset sampler 3 to re-balance the
training class distributions. The model is trained with the Adam
[18] optimizer (initial learning rate = 10−4) with a dynamic learning
rate decay 4 based on the validation loss. We use the default param-
eters for the Adam optimizer. The batch size is 256. All models are
implemented in PyTorch [22].

We use validation samples (20% source data) for hyper-parameter
selection and early stopping. The hyperparameters that we use for
the baseline include: the width of the convolution layers {64, 128},
the kernel size of the convolution layers {2, 3}, the kernel size of the
max pool layers {2}, the number of the GRU layers {2, 3}, the width
of the linear layer in encoder {32}, the width of the linear layer in
emotion classifier {32, 64}, and the dropout rate {0.3}.

For the UDA models, they are simply trained for 25 epochs, since
we do not have the labels for the target domain. They are trained
with the Adam optimizer with a fixed learning rate, which is also a
hyper-parameter. The optimizer is set with the default parameters.
The batch size is also 256.

The network structures of the domain discriminator and the
speaker discriminator are exactly the same as that of the emotion
classifier. The hyperparameters we use for the DANN include: the

3https://github.com/ufoym/imbalanced-dataset-sampler
4https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.ReduceLROnPlateau

Table 3: Cross-domain performance with the MFB acoustic
features.

(a) Results for detecting arousal.

ACC UAR
Model M→ I I→M M→ I I→M Avg
Baseline 0.258 0.368 0.201 0.224 0.263
DANN 0.367 0.414 0.445 0.306 0.383
SIDANN 0.407 0.496 0.452 0.428 0.446
Jaiswal et al. [17] - - - 0.402 -

(b) Results for detecting valence.

ACC UAR
Model M→ I I→M M→ I I→M Avg
Baseline 0.464 0.367 0.402 0.364 0.399
DANN 0.470 0.376 0.442 0.406 0.424
SIDANN 0.550 0.407 0.482 0.452 0.473
Jaiswal et al. [17] - - - 0.439 -

learning rate {1e-5, 3e-5, 1e-4, 3e-4, 1e-3}, and 𝜆 {0.1, 0.3, 1, 3, 10}
while for the SIDANN include: the learning rate {1e-5, 3e-5, 1e-4,
3e-4, 1e-3}, 𝜆1 {0.1, 0.3, 1, 3, 10}, and 𝜆2 {0.1, 0.3, 1, 3, 10}, where
the meanings of 𝜆, 𝜆1, 𝜆2 have been explained in Section 5.3 and
Section 5.4.

6.4 Experimental Results
6.4.1 Within-domain Evaluation. Table 1 displays thewithin-domain
performances of the baseline model. We have totally evaluated 11
models of different feature combinations.

For arousal detection (shown in Table 1a), the MFB combined
with the BERT features has the best ACC scores while the MFB fea-
tures achieve the highest UAR scores on both the MSP-Improv and
IEMOCAP databases. Further, the MFB combined with the BERT
features works better than the MFB features on average. For uni-
modal methods, both acoustic features perform better than the other
modalities (vision and language) and the lexical features perform
the worst on average. For valence detection (shown in Table 1b), the
VGGish combined with the ResNet and BERT features achieve the
best ACC scores on both the MSP-Improv and IEMOCAP databases.
However, the MFB combined with the ResNet and BERT features
has the best performance on average. For unimodal methods, lexical
features perform the best while acoustic features are the worst. This
is the exact opposite of arousal detection. The acoustic features are
informative for arousal detection and the lexical features are pow-
erful for valence detection. Past work [13, 21] showed that speech
works better for arousal detection and language is better able to
capture valence. Facial expression is also better at detecting valence
than arousal, see AVEC challenges results [25–28, 31, 38–40].

6.4.2 Cross-domain Evaluation. We show the results of the cross-
domain performance in Table 2. We input the MFB and the BERT
features for detecting arousal and the MFB, the ResNet, and the
BERT features for detecting valence since these two combinations
have the highest performance on average for each task. We report
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Table 4: Modality contribution analysis for unsupervised domain adaptation.

(a) Results for detecting arousal.

VGGish acoustic features ResNet visual features BERT lexical features
ACC UAR ACC UAR ACC UAR

Model M→ I I→M M→ I I→M M→ I I→M M→ I I→M M→ I I→M M→ I I→M Avg
Baseline 0.311 0.360 0.244 0.300 0.405 0.280 0.340 0.297 0.276 0.317 0.259 0.290 0.307
DANN 0.503 0.559 0.467 0.353 0.453 0.430 0.413 0.367 0.313 0.323 0.304 0.310 0.400
SIDANN 0.491 0.556 0.485 0.376 0.415 0.437 0.485 0.378 0.315 0.327 0.309 0.313 0.407

(b) Results for detecting valence.

VGGish acoustic features ResNet visual features BERT lexical features
ACC UAR ACC UAR ACC UAR

Model M→ I I→M M→ I I→M M→ I I→M M→ I I→M M→ I I→M M→ I I→M Avg
Baseline 0.424 0.360 0.376 0.386 0.323 0.350 0.343 0.316 0.494 0.453 0.475 0.449 0.396
DANN 0.450 0.401 0.395 0.402 0.499 0.400 0.459 0.381 0.506 0.458 0.484 0.458 0.441
SIDANN 0.481 0.400 0.414 0.405 0.501 0.408 0.510 0.400 0.515 0.467 0.477 0.465 0.454

the results in Table 2a and Table 2c. The numbers in the brackets are
the standard deviations. The numbers indicate that our proposed
model performs significantly better than the DANN and the base-
line with t-test (at 𝑝 < 0.1). Specifically, the SIDANN outperforms
the DANN by 5.6% and 2.8% on average for detecting arousal and va-
lence, confirming that the SIDANN has a better domain adaptation
ability than the DANN.

Though the SIDANN is the best performing model, it performs
poorly detecting arousal. Based on the modality contribution anal-
ysis in Section 6.5, we speculate that the lexical features are not
helpful for detecting arousal. Therefore, we replace the BERT lexical
features with the ResNet visual features and display the results in
Table 2b. The results show that the MFB combined the ResNet fea-
tures work better than the MFB combined with the BERT features
for all the evaluation metrics. Specifically, the former one outper-
forms the later one by 6.1% on average. The result is significant at
𝑝 < 0.1 with t-test.

6.5 Modality Contribution Analysis
To figure out the contribution of each modality, we re-conduct
the cross-domain experiment with a single modality (acoustic or
visual or lexical). Specifically, we first train unimodal models on the
source domain and then fine-tune them. The results of the modality
contribution analysis are reported in Table 3 and Table 4.

Table 3 shows the cross-domain performance with the MFB
acoustic features. The proposed SIDANN model performs better
than the DANN and baseline model for both arousal and valence.
Specifically, the SIDANN outperforms the DANN by 6.3% and 4.9%
on average when detecting arousal and valence values respectively.
Also, the proposed model achieves higher UAR than the numbers
reported in [17]. The results of the other three kinds of features
(VGGish, ResNet, and BERT) are reported in Table 4. The SIDANN
has a slight advantage over the DANN (+0.7% and +1.3% for arousal
and valence). Additionally, we find that the BERT lexical features
perform worst for arousal detection while they perform best for

valence detection. This is consistent with the previous results we
obtain in the within-domain experiments.

7 CONCLUSIONS
In this work, we study the Unsupervised Domain Adaptation (UDA)
problem on emotion recognition with multimodal data includ-
ing speech, vision, and language. We propose Speaker-Invariant
Domain-Adversarial Neural Network (SIDANN) to separate the
speaker bias from the domain bias. Specifically, we add a speaker
discriminator to detect the speaker’s identity. There is a gradient re-
versal layer at the beginning of the discriminator so that the encoder
can unlearn the speaker-specific information. The cross-domain
experimental results indicate that the proposed SIDANN model
outperforms (+5.6% and +2.8% on average for detecting arousal
and valence) the DANN model, confirming that the SIDANN has a
better domain adaptation ability than the DANN.

Though the multimodal methods perform better than the uni-
modal methods for the within-domain experiments, the results of
later ones are better for the cross-domain experiments. Therefore,
for our future work, we need to explore additional multimodal
fusion techniques to solve the problem. We also plan to evaluate
our proposed model on other tasks to evaluate its general ability to
reduce between-subject variance.
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