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Inferring Emotions From Large-Scale
Internet Voice Data
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Abstract—As voice dialog applications (VDAs, e.g., Siri,1

Cortana,2 Google Now3) are increasing in popularity, inferring
emotions from the large-scale internet voice data generated from
VDAs can help give a more reasonable and humane response.
However, the tremendous amounts of users in large-scale internet
voice data lead to a great diversity of users accents and expression
patterns. Therefore, the traditional speech emotion recognition
methods, which mainly target acted corpora, cannot effectively
handle the massive and diverse amount of internet voice data.
To address this issue, we carry out a series of observations, find
suitable emotion categories for large-scale internet voice data,
and verify the indicators of the social attributes (query time,
query topic, and users location) and emotion inferring. Based
on our observations, two different strategies are employed to
solve the problem. First, a deep sparse neural network model
that uses acoustic information, textual information, and three
indicators (a temporal indicator, descriptive indicator, and geo-
social indicator) as the input is proposed. Then, to capture the
contextual information, we propose a hybrid emotion inference
model that includes long short-term memory to capture the
acoustic features and a latent dirichlet allocation to extract text
features. Experiments on 93 000 utterances collected from the
Sogou Voice Assistant4 (Chinese Siri) validate the effectiveness of
the proposed methodologies. Furthermore, we compare the two
methodologies and give their advantages and disadvantages.

Index Terms—Emotion, Internet voice data, deep sparse neural
network, long short-term memory.
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I. INTRODUCTION

EMOTIONS occupy an important role in our daily life.
Comparatively speaking, voice is the most effective real-

time method of expressing emotions, in contrast to text and
image data. As voice dialogue applications (VDAs, e.g., Siri,
Cortana, Google Now) are currently used worldwide, Nuance5

finds that VDAs are used at least once a day by nearly 57% of
users in the world. Thus, it is easier to obtain large-scale internet
voice data today. Further, the emotions inferred from the voice
data help VDAs give a more reasonable and humane response.

Considerable research efforts have been devoted to speech
emotion recognition, and these studies focus on extracting ef-
fective features and utilizing diverse types of learning methods.
Spectrograms, Mel Frequency Cepstral Coefficients (MFCCs),
Energy, Formant, Linear Predictive Coding (LPC) and pitch of
voice are extracted as features by Meddeb et al. [1]. The au-
thors in [2] investigate a heuristic algorithm harmony search
(HS) for feature selection and extract 3 feature sets: MFCC,
Fourier Parameters (FP), and features extracted with the OpenS-
mile toolkit. [3] uses continuous hidden Markov models to clas-
sify speech emotions. A Support Vector Machine (SVM)-based
speech emotion recognition framework is presented in [4]. As
deep learning is developing rapidly, it performs well in generat-
ing features in similar areas (e.g., Facial Expression Recognition
[5], Multimedia Computing [6]). [7] uses Convolutional Neural
Networks (CNNs) to extract high-level features to identify dif-
ferent emotional states. In [8], Deep Neural Networks (DNNs)
are utilized to analyze speech recognition.

However, the data sets of these studies come primarily
from acted corpora instead of large-scale internet voice data.
Therefore, inferring emotions from the large-scale internet data
presents us with several challenges. First, the tremendous num-
bers of users in large-scale internet voice data lead to a variety
of accents and expression patterns. Thus, there are insufficient
training data available for specific users. Second, the previ-
ous studies on voice emotion recognition mainly used corpora
data (e.g., Berlin Emotional Database [9], [10], RML Emotional
Database [11]), which have limited amounts of data. For inter-
net data, a more suitable methodology to deal with the massive
amount of voice data is needed.

To address the above challenges, we collect a corpus of
large-scale internet voice data from the Sogou Voice Assistant,
which includes 6,891,298 utterances. The data set is recorded by
405,510 users in the year 2013 in the Chinese language. We first

5An image and speech applications corporation in America.
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consider how to model the emotions of large-scale internet voice
data and unveil six major emotion categories: disgust, happiness,
anger, sadness, boredom and neutral. Then, to solve the prob-
lem of data diversity, we consider finding other emotion-related
attributes to help infer emotion. The existence of topical and
geographical dependencies in users behaviors has been proven
in previous work [12]–[14]. Thus, we investigate whether query
attributes, such as query time, query topic (e.g., Chat, Search,
Joke), and user location (e.g., Beijing, Shanghai), are related to
the emotions in large-scale internet voice data.

Based on our observations, we propose two methodologies
to infer emotions from large-scale internet voice data. In the
first methodology, we propose a Deep Sparse Neural Network
(DSNN) to predict the users emotions. DSNN combines three
different indicators (temporal, descriptive and geo-social indi-
cators) with textual and acoustic features. In the second method-
ology, we propose a Hybrid Emotion Inference Model (HEIM)
to solve the problem. HEIM uses Long Short-Term Memory
(LSTM) to capture the acoustic features and Latent Dirichlet
Allocation (LDA) to extract the text features. Additionally, to
maximally utilize unlabeled data and further improve the ac-
curacy, we apply an auto-encoder to pre-train the network in
an unsupervised way. Additionally, we apply back-propagation
optimization to fine-tune the DSNN. In HEIM, a Recurrent
Auto-encoder Guided by Query Attributes (RAGQA), which
combines other emotion-related query attributes, is employed
to pre-train the LSTM. The experimental results confirm the ac-
curacy of the two proposed methodologies. In terms of the F1-
measure, the DSNN (0.4355) achieves a +0.0682 improvement
compared with Naive Bayesian (0.3673), a +0.0330 improve-
ment compared with KNN (K-Nearest Neighbors, 0.4025) and
a +0.0454 improvement compared with SVM (Support Vector
Machine, 0.3901). HEIM (0.7523) achieves a +0.3850 improve-
ment compared with Naive Bayesian, a +0.3498 improvement
compared with KNN and a +0.3622 improvement compared
with SVM. The factor contribution analysis also proves the ef-
fectiveness of the three indicators in the DSNN and HEIM.
Comparing these two feasible methodologies, we find that they
both have advantages and disadvantages. For example, the per-
formance of HEIM (0.7523) is much higher than that of the
DSNN (0.4355) in terms of the F1-measure. However, the pro-
cessing time of the DSNN is shorter than that of HEIM, so the
DSNN is a better choice when considering timeliness.

The remainder of this paper is organized as follows. In
Section II, we survey the existing research in the area of voice
emotion. In Section III, we introduce the large-scale internet
voice data that we establish. In Section IV, we formally de-
fine the problem. In Section V, we give a series of analyses and
present our observations. In Section VI, we provide an overview
of the proposed DSNN and HEIM. In Section VII, we conduct
experiments and report the experimental results. In Section VIII,
we conclude this work and discuss ideas for future work.

II. RELATED WORKS

A. Speech Emotion Inference

Previous research on speech emotion recognition has focused
primarily on extracting effective features and utilizing diverse

types of learning methods. In terms of inferring emotions from
speech, it is believed that a proper selection of features sig-
nificantly affects the classification performance [15]. A large
number of acoustic features have been explored to infer speech
emotions. Peipei et al. [16] extract Mel Frequency cepstrum co-
efficients (MFCCs), energy, pitch, Linear Prediction coefficients
and Mel cepstrum coefficients (LPCMCCs), and linear predic-
tion cepstrum coefficients (LPCCs) as features. To achieve accu-
rate classification of speech emotion, [2] investigates a heuristic
algorithm harmony search (HS) for feature selection and ex-
tracts 3 feature sets: MFCCs, Fourier Parameters (FPs), and
features extracted with the OpenSmile toolkit. They also com-
bine MFCCs with FPs as the fourth feature set. [17] also uses
the OpenSmile toolkit to extract acoustic features to improve
audio emotion recognition accuracy. [15] concludes that the
speech features that are explored in emotional states recogni-
tion can be grouped into four categories: continuous features
(pitch, energy, etc.), qualitative features (voice quality, tense,
etc.), spectral features (LFPC, MFCC, etc.), and TEO (Teager
energy operator)-based features. However, the best speech fea-
tures are still unclear for speech emotion recognition, despite
the above explored various features. Furthermore, some studies
suggest that in addition to acoustic features, other types of fea-
tures must be considered in emotion modelling. [18] combines
three kinds of information - acoustic, lexical and discourse - to
identify emotion states. The results show that the combination of
all three features improves emotion classification markedly both
for male and female samples compared with using only acoustic
features. As deep learning is developing rapidly, it performs well
in generating features in similar areas (e.g., facial expression
recognition [5], [19] and [20]). [21] trains a deep convolutional
neural network (DCNN) to learn the relevant, complex feature
representation from short segments of speech data for speech
emotion classification without hand-tuned features.

For learning methods, various types of classifiers have been
used to perform emotion recognition from speech. Naive
Bayesian is employed in [22]. [3] uses continuous hidden
Markov models to classify speech emotions. Since the Gaus-
sian Mixtures Model (GMM) performs well in capturing the
distribution of the input features, it is shown to have the capabil-
ity to develop an emotion recognition model with a large feature
vector. Thus, in [23], [24], GMM is utilized to identify different
emotional states. Additionally, K-Nearest Neighbors (KNN) is
adopted in [18] and a Support Vector Machine (SVM) based
speech emotion recognition framework is presented in [16]. In
[25], a latent Dirichlet allocation (LDA) model is introduced for
speech emotion recognition. Recently, increasing attention has
been paid to the use of deep learning for speech emotion recog-
nition which results in a better performance than that achieved
by the traditional framework. In [26], [27], Deep Neural Net-
works (DNNs) are utilized to analyze the speech emotion. [28]
and [29] adopt Convolutional Neural Networks (CNNs) to iden-
tify different emotional states. Furthermore, [30] introduces a
model consisting of a 1-state HMM exclusively and a 1-layer
Artificial Neural Network (ANN) for estimating the emission
probabilities instead of a 5-layer DBN.

However, 1) the data sets of these studies come mainly from
acted corpora instead of from large-scale internet voice data.
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Thus, the traditional speech emotion recognition methods can-
not effectively handle the massive and diverse internet voice
data. 2) While the contextual information of utterances is ig-
nored, these methods mainly focus on the statistical values
of acoustic features. However, since utterances evolve as time
passes, considering contextual information may be beneficial. 3)
Although some studies have revealed that acoustic attributes are
insufficient in speech emotion recognition [18], [15], whether
social attributes can assist in inferring emotion from large-scale
internet voice data is still unclear.

B. Large-Scale Internet Data Emotions

For large-scale internet data emotion analysis, previous works
have been based mainly on text or image data. [31] and [32] use
text data collected from Twitter6 for the task of emotion analysis.
[33] and [34] employ large-scale image data from Flickr7 to
study the emotion influence in large image social networks. [35]
uses a Gaussian mixture model to analyze a large-scale Image-
Emotion-Social-Net data set. [36] proposes a semi-supervised
hierarchical classification (SSHC) algorithm for the emotional
classification of color images from the internet cloud.

In addition, large-scale internet data emotion analysis has
considered specific events, such as how Flickr users affect the
distribution around Thanksgiving [37] and the response of mi-
crobloggers to the death of Michael Jackson [38]. Additionally,
there has been further analysis on social and economic trends,
such as consumer confidence and political opinions [39], [40]
as well as the relationship between Twitter moods and stock
market fluctuations [41].

Furthermore, for large-scale internet data emotions analysis,
the challenge is how to leverage the large-scale unlabeled data.
An auto-encoder is commonly used to make better use of un-
labeled data. Many early works in semi-supervised learning for
neural networks are built on auto-encoders. [42] imposes sparse
and orthogonal constraints on the auto-encoder and makes it
a highly discriminative descriptor. [43] proposes a deep fea-
ture learning framework based on stacked auto-encoders (SAEs)
by integrating pairwise constraints to serve as a discriminative
term. [44] constructs a model that includes a corresponding
auto-encoder (Corr-AE) by correlating hidden representations
of two uni-modal auto-encoders.

In our paper, we also use an auto-encoder to utilize large-scale
unlabeled data to enhance the performance of speech emotion
inferring. However, since it is difficult to acquire large-scale
internet voice data, works on inferring emotions from large-
scale internet voice data are still scarce.

C. Contributions

In this paper, we systematically study the problem of inferring
users emotions from a large-scale internet voice data base. Here,
we extend our previous work in [45], where we perform limited
single model validation. We propose two different methodolo-
gies (DSNN and HEIM) to solve the problem and give a de-
tailed analysis of the two methodologies compared with other

6http://twitter.com/
7http://www.flickr.com/

traditional models (SVM, KNN, NB). Further, we discuss their
advantages and disadvantages for different requirements and an-
alyze their own contributions. Specifically, the performance of
HEIM (0.7523) is much better than that of the DSNN (0.4355)
in terms of the F1-measure. However, the processing time of
HEIM is much longer than that of the DSNN. In addition, we
investigate suitable emotional categories for large-scale internet
voice data and the correlation between the query time, query
topic and user location and the emotion inferring.

III. THE LARGE-SCALE INTERNET VOICE DATA SET

A. Data Collection

The Sogou Voice Assistant provides us with a corpus of large-
scale internet voice data that includes 6,891,298 utterances.
Each utterance is approximately 3 to 4 seconds long. The data
set is recorded by 405,510 users in the year 2013 in Chinese.
Basic information (e.g., the users ID, query time, query topic
and users location) is attached to each utterance. Additionally,
the corresponding speech-to-text information is available from
Sogou Corporation.

B. Acoustic Feature Extraction

Seven main acoustic features are selected according to previ-
ous research on speech emotion recognition [46], [47]: Syllable
Duration (SD), Energy, F0, Mel Frequency cepstrum coeffi-
cients (MFCCs), Log Frequency Power Coefficients (LFPC),
Spectral Centroid (SC), and Spectral Roll-off (SR). In particu-
lar, the voice segments of each utterance to extract these features
are a 10-ms frame shift and a 20-ms frame length.

At the frame level, we extract 29 acoustic features for each
frame: Energy (1), F0 (1), MFCC (13), LFPC (12), SC (1), and
SR (1). At the utterance level, we adopt the feature selection
algorithm used in [48] to extract 113 acoustic features for each
utterance:

� Syllable Duration (SD) (11): the syllable duration se-
quence, which is extracted using the method in [49], is
applied with 11 functionals (mean, std, max, min, range,
quartile1/2/3, iqr1–2/2–3/1–3.).

� Energy (13): the energy envelop is applied with 13 func-
tionals (mean, std, max, min, range, quartile1/2/3, iqr1–
2/2–3/1–3, skewness, kurtosis.).

� F0 (13): the fundamental frequency contour, which is ex-
tracted using a modified STRAIGHT procedure [50], is
applied with 13 functionals (as for Energy).

� MFCC (26): the mean and standard deviation of the Mel
frequency cepstral coefficients 1–13

� LFPC (24): the mean and standard deviation of log fre-
quency power coefficients 1–12, which are extracted using
the method in [14] with α = 1.4.

� Spectral Centroid (SC) (13): the spectral centroid contour
applied with 13 functionals (as for Energy).

� Spectral Roll-off (SR) (13): the spectral roll-off contour
applied with 13 functionals (as for Energy).

The number in parentheses is the dimension of each acoustic
feature.
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We define three types of indicator features and formulate
N-dimensional (N = 24,70,21) vectors to describe them.

� Temporal Indicator (TI): We set a vector t = (t1 , . . . , t24),
where ti ∈ {0, 1} shows whether the utterance is recorded
within the time interval [i-1, i].

� Descriptive Indicator (DI): We use a vector d =
(d1 , . . . , d70) for each utterance where di ∈ {0, 1} indi-
cates whether the utterance belongs to the rank ith inquiry
type.

� Geo-social Indicator (GI): We formulate a vector g =
(g1 , . . . , g21), where gi ∈ {0, 1}(i ∈ [1, 2, . . . , 20]) im-
plies whether the utterance is recorded in the rank ith city
and g21 shows if the utterance is recorded in other cities
besides the top 20 cities.

C. Labeling

Because our data set is extremely large, it is not feasible to
label each utterances emotion manually. Therefore, we ask three
well-trained human labelers to label the emotions of 3,000 ut-
terances, which are randomly chosen from the whole data set.
When differences arise regarding a certain utterance, the label-
ers label the utterance following a discussion. If they cannot
reach a satisfactory conclusion, this utterance is labeled un-
clear. In total, there are 58 utterances that are labelled unclear,
and these utterances are not adopted as the ground truth in our
later experiments. Therefore, in total, 2,942 utterances are la-
beled with clear emotions, and the emotion distributions are
as follows: neutral: 61.3%, happiness: 13.2%, disgust: 13.0%,
boredom: 4.8%, anger: 3.9% and sadness: 3.8%. In addition to
the above labeled data, we use 90,000 unlabeled data samples
in the pre-training process.

IV. PROBLEM DEFINITION

In this section, we will introduce the problem formulation
of emotion inference on large-scale internet voice data. For
each utterance u in a given set of utterances U, we define
u = {x,g, lc}. x represents the set of acoustic features. g is the
textual information of an utterance and lc stands for the social
attribute (query time, query topic and user’s location) which are
provided by Sogou Corporation.

Definition: Emotions. Considering both textual and acoustic
information, we investigate the main emotions in human-mobile
voice interactions according to the observations of internet voice
data from VDAs. It is worth nothing that we find that the emotion
categories are different from theories about emotions regard-
ing facial expressions in human-mobile voice communication.
Based on our observations, we identify {happiness, sadness,
anger, disgust, boredom and neutral} as the emotional space
and define it as ES , where S = 6. Further, underlying human-
mobile voice interaction, we denote two interesting emotion
patterns, which are illustrated in detail in Section V.

Problem: Learning task. For utterances set U, we focus on
inferring the emotion for every utterance u ∈ U:

f : u = {x,d, lc} → s (1)

where s ∈ ES .

Fig. 1. The proportion of manually labeled emotions in each textual labeled
category.

V. PRELIMINARY FINDINGS

The natural way for VDAs to give answers is to utilize text
information with NLP techniques. To investigate the existence
of other emotion-related information that can assist in infer-
ring emotion, we conduct a series of observations and uncover
several phenomena.

A. Emotion Categories

Before providing the proper methodology of our task, we first
need to define the primary emotions found in internet voice data.

Considering that the text attribute in voice data is rather help-
ful for understanding users emotions, we investigate the primary
emotions as follows:

� We pick out all the emotional words in a list of common
Chinese emotional words from [46] after searching the
given text information of 6,891,298 utterances;

� We adopt the emotional words with a high frequency of
occurrence and remove those with a low frequency.

� we cluster the emotional words into corresponding cate-
gories based on previous work on Chinese emotional words
categorization [46], [51].

As shown in Fig. 2, we finally divide the emotional words into
five main categories, as follows: Happy, Bored, Sad, Angry, and
Disgusted. Compared with Ekmans six basic emotions proposed
for human-human communication, we can see that Fear and
Surprise from Ekmans six emotions are replaced by Bored. In
total, we collect 48,211 utterances. The principle is that text
information of each utterance should include emotional words
that belong to only one of the above five emotions. Additionally,
we regard this emotion category as the textual label of this
utterance.

To address how an utterances textual label matches its real
emotion, we randomly choose 1,000 utterances (200 for each
category). Then, we ask three well-trained human labelers to
label each utterance with the above five emotions and a Neutral
annotation. They label the utterances by listening to the utter-
ances, and they do not look at the text. Additionally, when the
labelers have different opinions, they engage in a discussion to
reach an agreement. We consider the manually labeled results
as the real emotion of each utterance. We compare the results of
the textual and manually labeled emotions, and the proportion
of manually labeled emotions in each textual labeled category
is shown in Fig. 1. Two interesting phenomena are found as
follows:
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Fig. 2. Examples of emotional word.

� Phenomenon I: In some cases, the textual labels do not
match the real emotions. For instance, some of the utter-
ances with happy textual labels have the emotion labeled
anger. This happens when a user says, Im really happy with
what you said, but he does not actually mean what the word
means. This phenomenon indicates Emotion Pattern I:
Irony exists in human-mobile communication. Addition-
ally, it is not proper to directly use the textual labels as real
emotion categories.

� Phenomenon II: A large part of the utterances are actually
neutral voice data, even those whose speech-to-text infor-
mation has an emotional word. This phenomenon shows
Emotion Pattern II: Compared with talking to a human,
people speak in a more implicit and rational manner when
speaking to a mobile. Thus, users would like to apply
linguistic information which conveyed by speech rather
than para-linguistic information conveyed by text to ex-
press their intentions. In other words, acoustic information
has more of an impact on emotion expression than text.
Thus, each textual labeled category consists of both the
real emotional and neutral voice data.

Therefore, according to these findings, we add ‘Neutral’ to the
above five main categories to form our complete emotional space
{happiness, sadness, anger, disgust, boredom and neutral}.

B. Observation on Query Time

We classify the manually labelled utterances as mentioned
in III.C into different groups according to their published time,
whose granularity is hourly. Then, we calculate the proportion
of emotion distributions among different hours. In Fig. 5, the
x-axis represents different times of a day, and the y-axis rep-
resents the proportion of the six types of emotions. From the
figures, we summarize some interesting findings about the time-
emotion correlation as follows.

� Joy at night: In Fig. 6(a), the proportion of happiness from
17:00 to 20:00 is relatively high, indicating that people
may feel more relaxed and comfortable when they finish
their work during the day and start to enjoy the night.

Fig. 3. The types with the top 20 query amount.

TABLE I
EXAMPLES OF 7 BASIC TYPES

� Dull before dawn: In Fig. 6(b), the proportion of boredom
is obviously higher and the proportion of anger is lower
from 2:00 to 5:00, which is the typical time for sleeping.
Such a phenomenon can be explained by people who suffer
from insomnia. When people find it difficult to sleep in the
early morning, they may feel bored and chat with the VDA.

C. Observations Regarding the Query Topic

Fig. 3 shows the types with the top 20 queries of 70 raw
topics. To simplify our model, we divide the 70 original topic
types into seven categories. As Table I shows, we define {Chat,
Q&A, Joke, Entertainment, Operation, Information and Other}
as the 7 basic types.

We classify the labeled utterances in III.C into different
groups according to the topics of the utterances and calculate
the proportion of emotion distributions among different topics.
In Fig. 7, the x-axis represents ten different types of topics, and
the y-axis represents the proportion of the six types of emotion.
From the figures, we summarize some interesting findings about
the topic-emotion correlation as follows.

� Fun seeker: In Fig. 8(a), the proportion of boredom in the
topics “Chat” and “Joke” is relatively high, indicating that
people may treat the VDA as a funny friend when they are
bored.

� Healing music: In Fig. 8(b), the proportion of sadness
in the topic “Music” is obviously higher than the others,
which indicates that music is a common way for people to
comfort themselves when they are sad.

D. Observations Regarding the Users Locations

Fig. 4 shows the proportion of inquiries in the top 10 cities. We
find that as the political and cultural center of China, Beijing has
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Fig. 4. The cities of the top 10 query amount.

Fig. 5. Emotion proportion of different time in a day.

the highest number of queries. In addition, first-tier cities such as
Shenzhen, Shanghai and Guangzhou have many voice assistant
users due to their high level of technology development.

Additionally, utilizing the utterances labelled in III.C, Fig. 9
demonstrates the emotion distribution of utterances of different
query locations. People living in Guangzhou have more abun-
dant expressions of emotions: only 34.40% of the utterances
in Guangzhou are neutral, which is the lowest compared with
other locations. We also find that the negative emotions sadness,
anger, disgust and boredom are more frequent than the positive
emotion happy, which may occur because the stressful living
environment of first-tier cities causes people to be negative.

Based on the above findings, we find that in addition to text
information, acoustic information and social attributes are re-
lated to the users emotions; thus, we consider all of these factors
in the modelling.

VI. METHODOLOGIES

Traditionally, text features and acoustic features are applied to
infer the users emotions. However, our data set is large-scale and
comes from non-specified users. Further, we find that the users
dialects and expression preferences vary in terms of correlations
such as locations, time, and topics. Thus, the problem cannot
be solved effectively by considering only textual and acoustic
information.

A. Our Proposed Methodologies

To take the correlations into account, two different strategies
are employed to solve the problem.

In the first methodology (Deep Sparse Neural Network,
Fig. 10), we utilize input features to discover latent features
at the low level of the network. Then, we use a deep sparse
network to learn the high-level features.

In the second methodology (Hybrid Emotion Inference
Model), since voice is a type of feature that changes over
time, we apply Long Short-Term Memory (LSTM) to extract
the acoustic features.

B. Deep Sparse Neural Network

Recently, deep neural networks have been applied to model
the features of large-scale speech and image data, and they per-
form well in classification tasks [52], [53]. Thus, in the first
methodology (Fig. 10), to discover latent features, we propose a
Deep Sparse Neural Network (DSNN) to extract features and in-
fer users emotions. In DSNN, we utilize utterance level acoustic
features as the input. Additionally, to better utilize voice data,
we combine 3 types of indicator features together with 7 types
of utterance level acoustic features.

Furthermore, we employ the LDA method used in [54] to
extract text features. LDA is a generative probabilistic model
for collections of discrete data such as text corpora [55]. It is
widely applied in sentiment analyses based on text and performs
well [54], [56]. Given utterance u’s text d, it outputs an emotion
distribution vector g = {g1 , g2 , . . . , gK }, where K is the length
of the vector. K is an adjustable parameter, and in our work, we
set K = 20. In addition, in the voice dialogue applications, the
users pronunciation is very short, and every utterance contains
7 Chinese characters, on average. Therefore, in our modeling,
we no longer perform segmenting for the text of each utterance
but consider each Chinese character to be a word.

In total, there are 248 dimensional features as input: 20 di-
mensions for text features, 113 dimensions for utterance level
acoustic features, 70 for descriptive features, 24 for temporal
features and 21 for geo-social features in the model. To jointly
model the input features, the network has two hidden layers,
size 400 and 200 neurons respectively.

To utilize the unlabeled data maximally, we apply an auto-
encoder to pre-train the network in an unsupervised manner.
Additionally, we apply back propagation optimization to fine-
tune the DSNN.

Pre-training can initialize the input features in the lower layers
of the network in an unsupervised manner. A standard auto-
encoder [57] first encodes the input with higher layer neurons
and then decodes the input with the following representation:

x̃ = f
(
w(2)f

(
w(1)x + b(1)

)
+ b(2)

)
(2)

The goal of an auto-encoder with data set x and reconstruction
x̃ is given by:

min
1
m

m

Σ
i=1

‖x̃(i) − x(i)‖2 +
λ

2
2
Σ

l=1

s1

Σ
i=2

s2

Σ
j=1

(wl
ij )

2

+ β
s2

Σ
j=1

KL(ρ||ρj ) (3)

where w(1) and w(2) are weight matrices of the encoder and
decoder and b(1) and b(2) are the biases of the encoder and
decoder. f(·) is the Softplus activation function. λ and β are the
weight decay and sparse penalty, and ρ is the sparse parameter.
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Fig. 6. Findings of time observation.

Fig. 7. Emotion proportion of different topics.

Inspired by the characteristics of the V2 region of the hu-
man visual cortex, many researchers have introduced depth
Sparsity into their model [58]. Therefore, in our paper, we also
adopt Kullback-Leibler (KL) divergence to represent Sparsity.
KL(ρ||ρj ) is the Kullback-Leibler (KL) divergence given by

KL(ρ||ρj ) = ρ log
ρ

ρj
+ (1 − ρ) log

1 − ρ

1 − ρj
(4)

Fine-tuning is performed in a supervised manner with back-
propagation optimization. The hypothesis of the network is de-
fined by

a(4) =
ew

( 3 )
j a ( 3 )

Σs4
k=1e

w
( 3 )
k a ( 3 )

(5)

where a(3) is the activation of the highest level feature neurons
with the feed-forward network. The overall objective function
of the network is then given by

min− 1
m

m

Σ
i=1

s4

Σ
j=1

yi
j log a(4) +

λs

2
s4

Σ
i=1

s3

Σ
j=1

(
w

(3)
ij

)2
(6)

where y
(i)
j is the ground truth indicating whether example (i)

belongs to class j, with a zero for false and one for true.
We empirically set the parameters to λ = 0.15, β = 4, ρ =

0.25 and λs = 0.1.

C. Hybrid Emotion Inference Model

Traditional machine learning methods (e.g., NB, SVM, KNN)
that are applied to recognize speech consider only the statisti-
cal values of acoustic features as the input. In fact, voice is a
type time-varying feature, and it is ineffective for showing the
variations of voice signals when we consider only the statistical
values of acoustic features.

Therefore, in our second proposed method, we apply LSTM
to model the problem. Long Short-Term Memory (LSTM) has
proven to be effective when considering time sequences [59]. In
[60] [61] [62] [63], to model conversation emotion, the authors
use bidirectional Long Short Term Memory (BLSTM) networks
to exploit long-range contextual information and achieve better
performance than traditional classification methods. As LSTM
can capture the correlations among frames, it is well suited
to deal with voices. In our paper, we utilize 29 dimensional
frame level acoustic features as the input features of LSTM.
Given the input {xt, ht−1 , ct−1} at time t, the current high-
level representations of the acoustic feature sequences refer to
the activation ht of the recurrent layer. It is calculated by the
following equations [64], which are standard LSTM equations
[59]:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi) (7)

ft = σ(Wf xxt + Wf hht−1 + Wf cct−1 + bf ) (8)

ct = ftct−1 + itμ(Wcxxt + Wchht−1 + bc) (9)

ot = σ(Woxxt + Wohht−1 + bo) (10)

ht = otμ(ct) (11)

In the functions above, Wαβ indicates the weight matrix con-
necting the β layer to the α layer and bα is the bias vector. i, o,
f and c are the input gate, forget gate, output gate and memory
cells. σ represents the sigmoid function. For μ, we use a hy-
perbolic tangent function f(x) = 1.7159 tanh(2

3 x), which has
been proven to be capable of improving convergence [65].

As t evolves, LSTM calculates ht iteratively. Finally, we
obtain the output hT as high-level representations of the acoustic
feature sequences.
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Fig. 8. Findings of topic observation.

Fig. 9. The emotion distribution of utterances of different cities.

Fig. 10. The architecture of Deep Sparse Neural Network.

Similar to the first methodology (DSNN), we propose Recur-
rent Auto-encoders [66] Guided by Query Attributes (RAGQA),
as illustrated in Fig. 11, to pre-train the LSTM in an unsu-
pervised way. RAGQA utilizes query attributes to find better
choices of parameters for LSTM. The query attributes in-
clude 70 dimensions of Descriptive Indicator features (DI) and
21 dimensions of Geo-social Indicator features (GI). Specifi-
cally, we have tried to include the temporal indicator features
(TI) as query attributes, but they do not improve the performance
further; therefore, they were left out for simplicity.

The structure of the RAGQAs encoder (Fig. 11) is the same
as that of LSTM, and the decoder is a nonlinear mapping. It is
worth noting that the traditional auto-encoder only reconstructs
the input xt into x̂t . However, in RAGQA, lc and xt+1 are

Fig. 11. The architecture of Recurrent Auto-encoders Guided by Query
Attributes (RAGQA).

also reconstructed into l̂c and x̂t+1 , where lc means the query
attributes.

The goal of RAGQA is to learn a function to make a re-
construction yt = [x̂t , l̂c , x̂t+1] similar to zt = [xt, lc , xt+1].
For convenience, we identify the set of the encoder parame-
ters as θ = {Wαβ , bα} and the set of the decoder parameters as
θ
′
= {W ′

, b
′ }, where W

′
is the weight matrix and b

′
is the bias.

The training target of RAGQA can be summarized as minimiz-
ing the cost function (12):

arg min
θ,θ ′

‖yt − zt‖2 +
λ

2
‖ξ‖2 (12)

‖ξ‖2 = (W
′
)2 +

∑
α

∑
β

(Wαβ )2 (13)

where λ is the parameters of the weight decay. The recon-
struction yt is calculated in the decoder of the RAGQA by the
following:

yt = μ(W
′
ht + b

′
) (14)

where ht is the activation of the encoder and the calculation is
the same as that of LSTM.

Similar to DSNN, we apply the LDA method to extract the
text features. Given utterance u’s text d, it outputs an emotion
distribution vector g = {g1 , g2 , . . . , gK }, where K is the length
of the vector; we set K = 20.
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TABLE II
THE PRECISION, RECALL AND F1-MEASURE OF THE 5 METHODS FOR INFERRING EMOTIONS IN VDAS

In HEIM, we first combine the textual features g generated
by LDA with high-level representations of acoustic features
hT generated by LSTM. Then, we put them into a SoftMax
classifier to compute the probability of each emotion category.
For emotion category s, the learning target of HEIM can be
formalized as minimizing the cost function (15):

J(θ,v) = − log p(s|hT ; g) +
λ

2
‖ε‖2 (15)

p(s|hT ; g) =
vh

s · hT + vg
s · g∑S

q=1 expvh
q ·hT +vg

q ·g (16)

‖ε‖2 =
S∑

q=1

((
vh

q

)2
+ (vg

q )2
)

+
∑
α

∑
β

(Wαβ )2 (17)

where v represents the weight matrix that connects the recurrent
hidden layer to the SoftMax layer.

After we train HEIM, we can obtain the emotion of every
utterance by finding the maximum probability p(s|hT ; g).

VII. EXPERIMENTS

A. Experiment Setup

1) Comparison Methods: To demonstrate the effectiveness
of our method, three learning methods, namely, Naive Bayesian
(NB), the K-Nearest Neighbors algorithm (KNN) and Support
Vector Machine (SVM) are chosen as the baseline methods. We
conduct comparison experiments on the same data set.

NB: Naive Bayesian is frequently used in many classification
problems and performs well. It is also used as the baseline
method in [67], [68].

KNN: The K-Nearest Neighbors algorithm is a non-
parametric method that is used for classification and regression
[69]. The method is also used as the baseline method in [70].

SVM: The Support Vector Machine is a widely used classifier
and has good performance. It is also used as the baseline method
in [68], [71].

2) Evaluation Metrics: We compare the performance of our
two proposed methods with that of the three baseline meth-
ods mentioned above in terms of precision, recall and the F1-
measure. These evaluation metrics are frequently applied in re-
trieval problems. Worthy of attention, we utilize five-fold cross

TABLE III
THE INPUT FEATURES OF 5 METHODS FOR INFERRING EMOTIONS IN VDAS

validation on 2942 labeled utterances in all experiments to eval-
uate the performance of emotion inferring. In detail, we use
2,354 utterances for training, and 588 utterances are used for
testing each cross validation.

Note that for multi-class classification, the model classifies
the utterance into one of the six categories. Thus, for an utterance
whose true emotional tag is happiness, only when the inference
result is happiness will it be calculated as a true positive.

B. Experimental Results

1) Multi-Class Classification: For our baselines, as shown
in Table III, in NB, KNN, and SVM, the input features are
acoustic features; text features, which are also calculated by
LDA; and indicator features of 2942 labeled utterances. Since
they cannot handle time sequences, we calculate the utterance-
level acoustic features. Therefore, for NB, KNN, SVM and
DSNN, we use utterance-level acoustic features, while in HEIM,
we use the frame-level acoustic features. Table II summarizes
the Precision, Recall and F1-measure.

We can see that the proposed DSNN outperforms all the base-
line methods in terms of the F1-measure: +6.82% better than
NB, +3.30% better than KNN, and +4.54% better than SVM.
The proposed HEIM performs much better than the other four
methods: +38.5% improvement over NB, +34.9% improve-
ment over KNN, +36.2% improvement over SVM and +31.6%
improvement over DSNN.

2) Analysis: For NB, KNN and SVM, only labeled data can
be utilized. In DSNN and HEIM, however, they maximally uti-
lize the unlabeled data in an unsupervised manner. In the DSNN,
we apply an auto-encoder to initialize the lower layers in the neu-
ral network. While in HEIM, query attributes are used on the
large amount of unlabeled data to pre-train the LSTM, which
helps find better parameters for the LSTM.
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Fig. 12. The confusion matrix of HEIM.

NB, KNN, SVM and DSNN use time features as the input,
which discover the latent features of the temporal correlations.
However, they cannot handle time sequences and use only the
statistical values of the acoustic feature sequences as the input.
For HEIM, it utilizes LSTM to generate the acoustic features,
which can better describe the contextual correlation between
frames of voice information. Therefore, HEIM outperforms the
other four methods.

Furthermore, by comparing the prediction results of the dif-
ferent categories, we find that boredom and disgust have lower
performances than do the other categories. On the one hand,
these two categories have a small proportion in the labeled train-
ing data, as mentioned in III.C. On the other hand, as shown in
Fig. 12, the confusion matrix of HEIM method, the utterances
labeled boredom and disgust are often mixed together and are
difficult to distinguish. This is also reported in [72]. We assume
that this occurs because both emotion categories have low F0
and Energy values.

C. Factor Contribution Analysis

In the DSNN, we combine three indicator features (temporal
indicator, descriptive indicator and geo-social indicator) with
acoustic features and text features as the input for the whole
network. In HEIM, we utilize Latent Dirichlet Allocation (LDA)
to extract text features and LSTM pre-trained by RAGQA to
process acoustic features. To examine the effect of each of the
different input features on the final performance, we conduct
experiments to evaluate the contribution of each type of feature
in our proposed methods.

For the DSNN, Fig. 13(a) shows the F1-measure of 5 mod-
els with different input combinations. From the figure, it shows
that text information helps achieve a better performance than
statistic-level acoustic information for all 6 of the emotion cate-
gories, except boredom. In addition, comparing the F1-measures
of these 5 methods, we can find that indicator features are

beneficial to improving the performance of the F1-measure for
all of the emotions except boredom.

For HEIM, the F1-measures of the 4 methods for the 6 emo-
tion categories are shown in Fig. 13(b). We can see that only
the acoustic features perform better than only the textual fea-
tures (+26.1%). In contrast, for the DSNN model, as shown
in Fig. 13(a), using text features alone leads to better perfor-
mance than does using acoustic features alone, which indicates
that when inferring emotions in VDAs, the detailed frame level
acoustic features (as in the HEIM) may be more informative
than the text features. In addition, when these features are com-
puted at the utterance level (as in the DSNN), then they become
less detailed and perhaps less informative than text. Further, we
compare the Textual feature model to the Textual+Acoustic fea-
ture model and find that acoustic features can make a +46.6%
improvement on average. In particular, it achieves a +66.4%
improvement for Happiness and a +73.7% improvement for
Sadness. These experiment results prove that it is necessary and
effective to account for the acoustic information of utterances.

D. Use of Unlabeled Data

In terms of the DSNN, based on Fig. 13(a), we can see that pre-
training with an auto-encoder helps improve the performance
for all 6 emotion categories. More importantly, we have the best
average result when we combine the auto-encoder with all three
indicator features.

In Fig. 13(c), we can find that the application of RAGQA,
which utilizes unlabeled data to pre-train the LSTM, also helps
improve the F1-measure of all 6 emotion classes. Compared
to the Textual+Acoustic feature model, the query attributes in
HEIM can improve +6.5% for the performance, on average.
Additionally, they are enhanced by +30.3% on the inference
of Anger. As a result, we find that HEIM, which combines
textual information processed by LDA, acoustic features of ut-
terances generated by LSTM and query attributes, has the best
performance.

E. Parameter Analysis

Compared with other parameters, such as the number of lay-
ers, batch size and number of epochs, we find that the number of
cells in the LSTM influences the result notably. In addition, the
scale of the unlabeled data set is a key factor that influences the
performance. Fig. 14 illustrates the influence of the parameter
changes in HEIM on the performance of emotion inference in
VDAs.

� The number of cells in LSTM: As shown in Fig. 14(a), the
performance first becomes better and then declines with
an increase in the number of cells in the LSTM. In terms
of the F1-measure, the performance is the highest (0.658)
when the number of cells in the LSTM is 220. Therefore,
in the experiments above, we set the number of cells in the
LSTM to 220.

� The scale of the unlabeled data in RAGQA: As shown in
Fig. 14(b), performance gradually improves as the size of
the unlabeled data applied for LSTM pretraining increases.
Further, when the scale of the unlabeled data is larger than
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Fig. 13. Feature contribution.

Fig. 14. Parameter sensitivity analysis.

90,000, the performance reaches convergence. Using a 24
core 2.10 GHz CPU with 64.0 GB memory, the train-
ing lasts for 10–12 hours on a data set containing 10,000
utterances. In fact, we have more than 6 million unla-
beled utterances. However, for time efficiency, we perform
experiments on the data set containing 90,000 unlabeled
utterances.

F. Summary of DSNN and HEIM

Although the performance of HEIM (0.7523) is much better
than that of the DSNN (0.4355) in terms of the F1-measure, the
processing time of HEIM is much longer than that of the DSNN.
In our experiment, during five-fold cross validation on 2942

labeled utterances, on a 24-core 2.10 GHz CPU with 64.0 GB
memory, the processing time of the DSNN is 150 seconds,
while that of the HEIM is 6000 seconds. It shows that the HEIM
is 40 times more time-consuming than the DSNN is because
HEIM considers text features additionally and LSTM keeps
time sequence information. Thus, the DSNN is a better choice
when processing time is limited, and we need to update the
model frequently. HEIM is considered better when a higher
classification performance is required.

G. Error Analysis

Finally, we analyze the possible sources of errors based on
the emotion inference results of the proposed DSNN and HEIM.

� Limited labeled data: Due to the massive scale of our
dataset, we cannot label every utterance manually. Thus,
we only utilize 2,942 labeled utterances to train the DSNN,
which may be not enough to obtain a well-trained model.

� Unbalanced data: As 61.3% of the labeled utterances be-
long to the Neural category, the data are extremely unbal-
anced, which has a negative impact on the classification
results.

� Limited emotion categories: Inferring emotion categories
is a very difficult task because emotion is highly subjective
and complicated. Occasionally, different types of feelings
can mix together. Thus, new types of emotional labels
emerge. Currently, there is still no consensus on how to
model emotion. Thus, the 6 categories that we adopt may
not cover all the human feelings in the VDAs.

H. Findings

To study the problem of emotion inferring from Large-scale
Internet Voice Data for VDAs, the main challenge is that the
tremendous numbers of users in VDAs lead to a variety of
users accents and expression patterns. Thus, there are insuffi-
cient training data available for specific users. Therefore, in our
proposed DSNN and HEIM two methodologies, besides consid-
ering acoustic features and text features, we also take the Query
Attributes of users (temporal indicator, descriptive indicator and
geo-social indicator) into modeling. The experimental results on
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a real-world VDA dataset prove that these can be helpful for the
unspecific speaker problem in VDAs.

Additionally, based on the dataset from the Sogou Voice
Assistant, we also have some interesting findings which can
be helpful for the study of emotion inferring from Internet
Voice Data. For example, using MFCC feature alone achieves
a +22.35 improvement over using Energy feature alone by
HEIM method in terms of the F1-measure. Therefore, frequency
domain acoustic features has more of an impact on emotion
expression on Internet voice data than time domain acoustic
features. Meanwhile, Energy feature is really important to
distinguish Sadness from others. Normalizing volume of voice
data before feature extraction which mainly affects the energy
feature causes a 21% reduction by DSNN method in terms of
the F1-measure of Sadness.

VIII. CONCLUSION

In this paper, we study the problem of classifying emotions
in utterances from large-scale internet voice data coming from
VDAs. At first, we consider how to measure the emotions of
large-scale internet voice data and exploit five major emotion
categories. Then, we investigate whether social attributes are
related to inferring the emotion. Taking these observations into
consideration, we propose two methodologies to solve the prob-
lem. In the first methodology (Deep Sparse Neural Network), we
identify three indicators (temporal indicator, descriptive indica-
tor and geo-social indicator) and combine them with acoustic
and text features as the input of our whole network. In the sec-
ond methodology (Hybrid Emotion Inference Model), we apply
Long-Short Term Memory (LSTM) to generate the acoustic fea-
tures. Additionally, to maximally utilize unlabeled data and fur-
ther improve accuracy, we apply an auto-encoder to pre-train the
network in an unsupervised way. Additionally, we apply back-
propagation optimization to fine-tune the DSNN. In HEIM, a
Recurrent Auto-encoder Guided by Query Attributes (RAGQA),
which combines other emotion-related query attributes, is em-
ployed to pre-train the LSTM. Evaluating these two methodolo-
gies, we find that HEIM outperforms the traditional methods,
such as BN, SVM and KNN, on a large-scale voice data set in
the real world. However, in settings in which processing speed
is a concern, the proposed DSNN method trains much faster
than the HEIM and outperforms traditional methods such as
BN, SVM and KNN that have comparable processing speeds.
Thus, we suggest utilizing HEIM for accuracy and employing
DSNN when focusing on timeliness.

For our future work, more information can be considered. For
example, users of different genders may have different emo-
tional expression characteristics in terms of their word choices
or different acoustic characteristics. In addition, users emotions
may be influenced by weather. Additionally, in this paper, we
use 93,000 utterances, but 93,000 is not an enormous number.
We want to expand the scale of our data set to one million; thus,
we can employ more voice data to improve the performance of
our methodologies.

As VDAs are becoming increasingly popular, users expect to
communicate with them not only by instructions and queries but

also through chats and conversations. According to our work,
VDAs can take users emotions into account and better under-
stand their intentions when giving responses, thereby optimizing
the interactions.

REFERENCES

[1] M. Meddeb, H. Karray, and A. M. Alimi, “Speech emotion recognition
based on arabic features,” in Proc. 15th Int. Conf. Intell. Syst. Des. Appl.,
2015, pp. 46–51.

[2] Y. Tao, K. Wang, J. Yang, N. An, and L. Li, “Harmony search for fea-
ture selection in speech emotion recognition,” in Proc. Int. Conf. Affect.
Comput. Intell. Interact., 2015, pp. 362–367.

[3] B. Schuller, G. Rigoll, and M. Lang, “Hidden Markov model-based speech
emotion recognition,” in Proc. Int. Conf Multimedia Expo., 2003, vol. 1,
pp. 401–404.

[4] Y. Pan, P. Shen, and L. Shen, “Speech emotion recognition using support
vector machine,” Int. J. Smart Home, vol. 1, no. 20, pp. 6–9, 2013.

[5] T. Zhang et al., “A deep neural network-driven feature learning method
for multi-view facial expression recognition,” IEEE Trans. Multimedia,
vol. 18, no. 12, pp. 2528–2536, Dec. 2016.

[6] G.-J. Qi, H. Larochelle, B. Huet, J. Luo, and K. Yu, “Guest editorial: Deep
learning for multimedia computing,” IEEE Trans. Multimedia, vol. 17,
no. 11, pp. 1873–1874, Nov. 2015.

[7] Q. Mao, M. Dong, Z. Huang, and Y. Zhan, “Learning salient features for
speech emotion recognition using convolutional neural networks,” IEEE
Trans. Multimedia, vol. 16, no. 8, pp. 2203–2213, Dec. 2014.

[8] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[9] X. Zhou, J. Guo, and R. Bie, “Deep learning based affective model for
speech emotion recognition,” in Proc. Int. IEEE Conf. Ubiquitous Intell.
Comput., Adv. Trusted Comput., Scalable Comput. Commun., Cloud Big
Data Comput., Internet People, Smart World Congress, 2016, pp. 841–
846.

[10] I. Trabelsi, D. B. Ayed, and N. Ellouze, “Improved frame level features
and SVM supervectors approach for the recogniton of emotional states
from speech: Application to categorical and dimensional states,” Int. J.
Image Graph. Signal Process., vol. 5, no. 9, pp. 8–13, 2013.

[11] L. Gao, L. Qi, E. Chen, and L. Guan, “A fisher discriminant framework
based on kernel entropy component analysis for feature extraction and
emotion recognition,” in Proc. IEEE Int. Conf Multimedia Expo Work-
shops, 2014, pp. 1–6.

[12] D. Phung, S. K. Gupta, T. Nguyen, and S. Venkatesh, “Connectivity,
online social capital, and mood: A Bayesian nonparametric analysis,”
IEEE Trans. Multimedia, vol. 15, no. 6, pp. 1316–1325, Oct. 2013.

[13] H. Yin, B. Cui, L. Chen, Z. Hu, and Z. Huang, “A temporal context-aware
model for user behavior modeling in social media systems,” in Proc.
Assoc. Comput. Mach. Special Interest Group Manage. Data Int. Conf.
Proc., 2014, pp. 1543–1554.

[14] K. Y. Kamath, J. Caverlee, K. Lee, and Z. Cheng, “Spatio-temporal dy-
namics of online memes:A study of geo-tagged tweets,” in Proc. Int. Conf.
World Wide Web, 2013, pp. 667–678.

[15] M. E. Ayadi, M. S. Kamel, and F. Karray, “Survey on speech emo-
tion recognition: Features, classification schemes, and databases,” Pattern
Recognit., vol. 44, no. 3, pp. 572–587, 2011.

[16] P. Shen, Z. Changjun, and X. Chen, “Automatic speech emotion recogni-
tion using support vector machine,” in Proc. Inte. Conf Electron. Mech.
Eng. Inf. Technol., 2011, pp. 621–625.

[17] Y. Fan, X. Lu, D. Li, and Y. Liu, “Video-based emotion recognition us-
ing CNN-RNN and c3d hybrid networks,” in Proc. 18th ACM Int. Conf.
Multimodal Interact. ACM, 2016, pp. 445–450.

[18] C. M. Lee and S. S. Narayanan, “Toward detecting emotions in spoken
dialogs,” IEEE Trans. Speech Audio Process., vol. 13, no. 2, pp. 293–303,
Mar. 2005.

[19] S. Rifai, Y. Bengio, A. Courville, P. Vincent, and M. Mirza, “Disentangling
factors of variation for facial expression recognition,” in Proc. Eur. Conf.
Comput. Vision, 2012, pp. 808–822.

[20] D. Yu, M. L. Seltzer, J. Li, J. T. Huang, and F. Seide, “Feature learning in
deep neural networks - studies on speech recognition tasks,” presented at
the Int. Conf. Learn. Represent., Scottsdale, AZ, USA, May 2013.

[21] W. Zheng, J. Yu, and Y. Zou, “An experimental study of speech emotion
recognition based on deep convolutional neural networks,” in Proc. Int.
Conf. Affect. Comput. Intell. Interact., 2015, pp. 827–831.



JIA et al.: INFERRING EMOTIONS FROM LARGE-SCALE INTERNET VOICE DATA 1865

[22] M. H. Sedaaghi, C. Kotropoulos, and D. Ververidis, “Using adaptive ge-
netic algorithms to improve speech emotion recognition,” in Proc. IEEE
Workshop Multimedia Signal Process., 2007, pp. 461–464.

[23] N. Thapliyal, “Speech based emotion recognition with gaussian mixture
model,” Int. J. Adv. Res. Comput. Eng. Technol., vol. 1, no. 5, pp. 65–69,
2012.

[24] X. Cheng and Q. Duan, “Speech emotion recognition using Gaussian
mixture model,” in Proc. 2nd Int. Conf Comput. Appl. Syst. Model., 2012,
pp. 1222–1225.

[25] M. Shah, L. Miao, C. Chakrabarti, and A. Spanias, “A speech emotion
recognition framework based on latent dirichlet allocation: Algorithm and
FPGA implementation,” in Proc. IEEE Int. Conf Acoust., Speech Signal
Process., 2013, pp. 2553–2557.

[26] K. Han, D. Yu, and I. Tashev, “Speech emotion recognition using deep
neural network and extreme learning machine,” in Proc. Annu. Conf. Int.
Speech Commun. Assoc., 2014, pp. 223–227.

[27] A. Stuhlsatz, C. Meyer, F. Eyben, and T. Zieike, “Deep neural networks
for acoustic emotion recognition: Raising the benchmarks,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2011, pp. 5688–5691.

[28] Z. Huang, M. Dong, Q. Mao, and Y. Zhan, “Speech emotion recognition
using CNN,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 801–
804.

[29] W. Q. Zheng, J. S. Yu, and Y. X. Zou, “An experimental study of speech
emotion recognition based on deep convolutional neural networks,” in
Proc. Int. Conf Affect. Comput. Intell. Interact., 2015, pp. 827–831.

[30] D. Le and E. M. Provost, “Data selection for acoustic emotion recognition:
Analyzing and comparing utterance and sub-utterance selection strate-
gies,” in Proc. Int. Conf Affect. Comput. Intell. Interact., 2015, pp. 146–
152.

[31] R. Cbalabantaray, M. Mohammad, and N. Sharma, “Multi-class twitter
emotion classification: A new approach,” Int. J. Appl. Inf. Syst., vol. 4,
no. 1, pp. 48–53, 2012.

[32] M. Hasan, E. Rundensteiner, and E. Agu, “Emotex: De-
tecting emotions in twitter messages,” in Proc. ASE BIG-
DATA/SOCIALCOM/CYBERSECURITY Conf., 2014, pp. 27–31.

[33] X. Wang, J. Jia, J. Tang, B. Wu, L. Cai, and L. Xie, “Modeling emotion
influence in image social networks,” IEEE Trans. Affect. Comput., vol. 6,
no. 3, pp. 286–297, Jul.–Sep. 2015.

[34] B. Wu, J. Jia, Y. Yang, P. Zhao, and J. Tang, “Understanding the emotions
behind social images: Inferring with user demographics,” in Proc. IEEE
Int. Conf Multimedia Expo, 2015, pp. 1–6.

[35] S. Zhao, H. Yao, Y. Gao, R. Ji, and G. Ding, “Continuous probability
distribution prediction of image emotions via multi-task shared sparse
regression,” IEEE Trans. Multimedia, vol. 19, no. 3, pp. 632–645, Mar.
2017.

[36] N. Li, Y. Xia, and Y. Xia, “Semi-supervised emotional classification of
color images by learning from cloud,” in Proc. Int. Conf. Affect. Comput.
Intell. Interact., 2015, pp. 84–90.

[37] J. Jia et al., “Can we understand van gogh’s mood?: Learning to infer af-
fects from images in social networks,” in Proc. ACM Int. Conf Multimedia,
2012, pp. 857–860.

[38] E. Kim, S. Gilbert, M. J. Edwards, and E. Graeff, “Detecting sadness
in 140 characters: Sentiment analysis and mourning michael jackson on
twitter,” Web Ecol., vol. 3, pp. 1–15, 2009.

[39] B. O’Connor, R. Balasubramanyan, B. R. Routledge, and N. A. Smith,
“From tweets to polls: Linking text sentiment to public opinion time
series,” in Proc. 4th Int. AAAI Conf Weblogs Social Media, Washington,
DC, USA, May, 2010, pp. 122–129.

[40] J. Bollen, A. Pepe, and H. Mao, “Modeling public mood and emotion:
Twitter sentiment and socio-economic phenomena,” Comput. Sci., vol. 44,
no. 12, pp. 2365–2370, 2009.

[41] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock market,”
J. Comput. Sci., vol. 2, no. 1, pp. 1–8, 2010.

[42] Y. Zhao, Y. Li, Z. Shao, and H. Lu, “Lsod: Local sparse orthogonal
descriptor for image matching,” in Proc. ACM Multimedia Conf., 2016,
pp. 232–236.

[43] X. Yao, J. Han, G. Cheng, and L. Guo, “Semantic segmentation based
on stacked discriminative autoencoders and context-constrained weakly
supervised learning,” in Proc. 23rd ACM Int. Conf Multimedia., 2015,
pp. 1211–1214.

[44] F. Feng, X. Wang, and R. Li, “Cross-modal retrieval with correspondence
autoencoder,” in Proc. 22nd ACM Int. Conf Multimedia., 2014, pp. 7–16.

[45] B. Wu, J. Jia, T. He, J. Du, X. Yi, and Y. Ning, “Inferring users’ emotions
for human-mobile voice dialogue applications,” in Proc. IEEE Int. Conf.
Multimedia Expo, 2016, pp. 1–6.

[46] D. Cui, “Analysis and conversion for affective speech,” Ph.D. dissertation,
Dept. Comput. Sci. Technol., Tsinghua University, 2007.

[47] T. L. Nwe, S. W. Foo, and L. C. D. Silva, “Speech emotion recognition
using hidden Markov models,” Speech Commun., vol. 41, no. 4, pp. 603–
623, 2003.

[48] Z. Ren, J. Jia, L. Cai, K. Zhang, and J. Tang, “Learning to infer pub-
lic emotions from large-scale networked voice data,” in Proc. Int. Conf
Multimedia Model. Springer, 2014, pp. 327–339.

[49] D. Wang and S. Narayanan, “An acoustic measure for word prominence in
spontaneous speech,” IEEE Trans. Audio Speech Lang. Process., vol. 15,
no. 2, pp. 690–701, Feb. 2007.

[50] H. Kawahara, A. D. Cheveign, H. Banno, T. Takahashi, and T. Irino,
“Nearly defect-free f0 trajectory extraction for expressive speech modifi-
cations based on straight,” in Proc. Eurospeech, Eur. Conf. Speech Com-
mun. Technol., Lisbon, Portugal, Sept. 2005, pp. 537–540.

[51] J. Mei, Tongyici Cilin (Version 2). Shanghai, China: Shanghai Dictionary
Press 1996.

[52] J. Ngiam et al., “Multimodal deep learning,” in Proc. Int. Conf Mach.
Learn, Bellevue, WA, USA, 28 Jun.–Jul. 2012, pp. 689–696.

[53] N. Srivastava and R. Salakhutdinov, “Multimodal learning with deep boltz-
mann machines,” J. Mach. Learn. Res., vol. 15, no. 8, pp. 1967–2006,
2012.

[54] Y. Yang et al., “How do your friends on social media disclose your
emotions?” in Proc. 28th AAAI Conf. Artif. Intell., 2014, pp. 306–312.

[55] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3 pp. 993–1022, 2003.

[56] C. Lin, Y. He, R. Everson, and S. Ruger, “Weakly supervised joint
sentiment-topic detection from text,” IEEE Trans. Knowl. Data Eng.,
vol. 24, no. 6, pp. 1134–1145, Jun. 2012.

[57] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proc. ICML Workshop Unsupervised Transfer Learn., 2012, pp. 37–49.

[58] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model for
visual area v2,” in Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 873–880.

[59] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, pp. 1735–1780, 1997.
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[62] M. Wöllmer, F. Eyben, B. Schuller, and G. Rigoll, “A multi-stream ASR
framework for BLSTM modeling of conversational speech,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2011, pp. 4860–4863.
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